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ABSTRACT

Climate change threats and the necessity to achieve global Sustainable Development Goals demand
unprecedented economic and social shifts around the world, including a fundamental transformation of
the global energy system. An energy transition is underway in most regions, predominantly in the power
sector. This research highlights the technical feasibility and economic viability of 100% renewable energy
systems including the power, heat, transport and desalination sectors. It presents a technology-rich,
multi-sectoral, multi-regional and cost-optimal global energy transition pathway for 145 regional en-
ergy systems sectionalised into nine major regions of the world. This 1.5 °C target compatible scenario
with rapid direct and indirect electrification via Power-to-X processes and massive defossilisation in-
dicates substantial benefits: 50% energy savings, universal access to fresh water and low-cost energy
supply. It also provides an energy transition pathway that could lead from the current fossil-based
system to an affordable, efficient, sustainable and secure energy future for the world.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Sustainable Development Goals (SDGs) report [ 1] highlights
risks posed by the impact of climate change in eroding and
reversing decades of progress on inequality, food security and other
SDGs. In this context, a transition of the global energy system is of
utmost relevance as energy use is responsible for the majority of
global greenhouse gas (GHG) emissions [2]. Transition towards
higher shares of renewable energy (RE) will simplify achieving
universal access to clean and affordable energy, reducing GHG
emissions and decreasing water scarcity by eliminating freshwater
usage in thermal power plants [3]. This transition has already
started with renewables providing more than 27% of the global
electricity generation by end of 2019 [4], including about 11%
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generated by new renewable energy technologies, mainly wind
turbines and solar photovoltaics (PV). Driven by cost reductions,
renewable electricity is increasingly cost-competitive with con-
ventional thermal power plants: in some regions RE cost is lower
than running costs of existing fossil and nuclear power plants [5],
and solar PV has emerged as the least costing source of electricity
production in the history of mankind [6]. A similar trend is
observed in the heat sector: about 10.1% of the heat used worldwide
in 2019 was produced from sustainable sources, including renew-
able electricity [4]. The transport sector is still lagging in adopting
sustainable solutions: despite the rapid development of electrifi-
cation, hybrids and synthetic fuels, oil and petroleum products
contribute the vast majority of energy demand.

Many global energy scenarios have tried to project the future
transition of energy systems based on a wide ranging set of as-
sumptions, methods and targets from a national as well as global
perspective [7]. Most of the global energy transition studies present
pathways that result in CO, emissions even in 2050, which are not
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compatible with the goals of the Paris Agreement (as is with most
IEA global scenarios except the NZE2050 in the recent WEO 2020
[6]) and are dependent on the role of technologies with question-
able sustainability (fossil CCS and nuclear) as in the Global Energy
Assessment of the International Institute for System Analysis
(IIASA) [8], while later studies such as Grubler et al. [9] consider
decline of final energy demand by 2050, despite increasing popu-
lation, income and activity. The Centre for Alternative Technology
[10] outlines scenarios on global, regional, national and sub-
national scales that illustrate how the Paris Agreement targets
could be realised. Most of the studies lay out pathways to phase out
non-sustainable technologies, while integrating sustainable
renewable energy options to satisfy the increasing energy demands
of the future global society. Several studies on the global level with
different models and assumptions show that such a transition can
be achieved by 2050: Pursiheimo et al. [11] using the TIMES-VTT
model, Loffler et al. [12] with GENeSYS-MOD, Jacobson et al. [13]
and Teske [14] have different regional structures, technology
portfolios, technical and financial assumptions, but all prove that a
renewable energy based system is highly cost competitive
compared to the conventional system. Jacobson et al. [15] and Teske
et al. [14] also show that benefits of a renewable energy system are
not limited to radical declines in GHG emissions and low energy
system costs, but also lead to lower social costs, and additional jobs.
However, limitations in different methods of global energy sce-
narios lead to some of them failing to acknowledge the role of
storage technologies in future energy systems [7] and the impact of
sector coupling Power-to-X technologies, namely Power-to-Heat
and synthetic fuels production. Hansen et al. [16] provide an
overview on 100% renewable energy system studies and highlight
the importance of multi-sector analyses, hourly temporal resolu-
tion, sector coupling and Power-to-X technologies. In order to reach
full sustainability, the use of biofuels should be limited to un-
avoidable residues and synthetic fuels have to play a more signifi-
cant role, so that fuel production does not compete with food crops.
Emerging issue of water scarcity has to be taken into account,
considering the additional energy demand for water desalination,
purification and transportation in order to enable universal access
to clean water for residential, agricultural and industrial use [17].

While the global energy system and the factors that influence it
are far more complex than what any scenario or narrative can
capture, this research presents a possible cost-driven energy sys-
tem transition from the present structure (2015) towards a fully
sustainable 100% renewable system in 2050, in high regional and
hourly temporal resolution across the power, heat, transport sec-
tors, and seawater desalination. This scenario presents a possible
global pathway for the defossilisation of the current energy system
to fulfill the IPCC’s 1.5 °C scenario requirements in a cost-effective
manner.

2. Methods

The LUT Energy System Transition model initially applied across
the power sector [18], is further expanded to involve collating all
relevant energy data across power, heat, transport and desalination
into 145 sub-regions of the world. This novel approach enables a
more decentralised, cost-driven energy transition optimisation
across 145 sub-regions of the world that can satisfy their energy
demands through resources available within the corresponding
sub-regions. Lastly, a post-processing of the results involving ana-
lyses and visualisation from the 145 sub-regions produces
compiled results for nine major regions, Europe, Eurasia, Middle
East Northern Africa (MENA), sub-Saharan Africa (SSA), South Asia
(SAARC), Northeast Asia, Southeast Asia, North America and South
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America, which are further aggregated into global results. The high
temporal and geospatial resolutions allow to avoid a cooper plate
effect by evaluating the impact of VRE integration in greater detail
and assesses the role of storage, flexibility options and regional grid
interconnections in balancing energy systems with high shares of
RE.

2.1. Model description

The energy transition modelling was performed with the LUT
Energy System Transition model [18], which optimises an energy
system under certain constraints for a comprehensive set of energy,
generation, storage, and transformation technologies. Unlike most
other models used for global energy systems studies that normally
use the time-slices approach (MESSAGE, MARKAL, TIMES,
GENeSYS-MOD), the LUT model optimises the energy system in full
hourly resolution. This allows for consideration of the variability
effects of RE on energy systems in greater detail, thereby ensuring
the balance of energy demand and supply for all hours of the year.
The model uses myopic foresight, in this study simulation is applied
for five-year intervals from 2015 to 2050, comprising the coupled
power and heat sectors, transport sector, and energy demand for
desalination. A multi-node approach enables the description of any
desired configuration of sub-regions and power transmission in-
terconnections. The main constraint for the optimisation is the
matching of the energy supply and the energy demand for every
hour of the applied year and the optimisation target is the mini-
mum of the total annual cost of the system. Energy supply is
modelled for electricity, heat of three temperature levels, and
transport fuels: hydrogen (gaseous, liquid), methane (gaseous,
liquid), and liquid hydrocarbons, comprised of gasoline, diesel,
marine fuel oil and jet fuel. The full hourly resolution of the model
significantly increases the computation time. However, it guaran-
tees that for every hour of the year the total supply within a sub-
region covers the local demand and enables a more precise sys-
tem description including synergy effects of different system
components. The model is based on linear optimisation and per-
formed on an hourly resolution for an entire year in two stages.
First, a prosumers simulation based on annual energy cost in
relation to own generation and local retail energy prices is con-
ducted to determine the least cost energy options for prosumers in
the sub-regions. The next stage involves an overall energy system
simulation across the different sectors to derive cost optimal en-
ergy mixes form 2015 to 2050 for the corresponding sub-regions.
The model ensures high precision computation and reliable re-
sults. The costs of the entire system are calculated as a sum of the
annualised capital expenditures including the weighted average
cost of capital, operational expenditures (including ramping costs),
fuel costs and cost for GHG emissions for all available technologies.
The detailed description of the LUT Energy System Transition
model is provided in the Supplementary Material in Appendix A
(section 1. Model description). Prina et al. [19] compared models
for highly renewable energy systems in the main categories: res-
olution in time, in space, in techno-economic detail, in sector
coupling and for transparency. Amongst all long-term energy
transition models, the LUT model received the highest scoring,
which further validates the efficacy of these findings.

2.2. Applied technologies

To describe the transition of power, heat and transports sectors
towards RE-based energy supply the wide list of technologies was
considered in the modelling, in total the technologies can be clas-
sified into six main categories.
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o Electricity generation: RE, fossil and nuclear technologies;

e Heat generation: RE and fossil technologies;

e Transportation: road, rail, marine and aviation;

e Energy storage: electricity, heat and fuels;

e Energy sector coupling technologies;

o Electricity transmission technologies.

Fossil fuels based power generation technologies include
condensing coal power plants, oil-based internal combustion en-
gines (ICE), open cycle (OCGT) and combined cycle gas turbines
(CCGT), fission based nuclear power plants and coal, gas and oil-
based combined heat and power (CHP) plants. Renewable elec-
tricity generation includes solar PV technologies (optimally fixed-
tilted, single-axis north-south tracking and rooftop PV for resi-
dential, commercial and industrial segments), wind turbines
(onshore, offshore), hydropower (run-of-river and reservoir),
geothermal energy and bioenergy (solid biomass power plants and
CHP, biogas and waste-to-energy CHPs).

Heating technologies are subdivided in district heat or utility-
scale heating technologies including fossil fuel boilers (coal, gas
and oil fuelled), direct electric heating and utility-scale heat pumps,
concentrating solar thermal power (CSP) parabolic fields,
geothermal and solid biomass district heat plants. Individual
heating technologies include small scale fossil fuel boilers (gas and
oil fuelled), direct electric heaters and heat pumps, solid biomass
and biogas boilers.

The transport sector is divided into four categories: road, rail,
marine and aviation. Road passenger transport is divided into light
duty vehicles (LDV), buses and 2—3 wheelers (2/3W). Road freight
transport is divided into medium-duty vehicles (MDV) and heavy-
duty vehicles (HDV). For all road transport vehicles, the model
considers four powertrain types: conventional internal combustion
engine vehicles (ICE), plug-in hybrid electric vehicles (PHEV),
battery-electric vehicles (BEV) and hydrogen-based fuel cell vehi-
cles (FCEV). Rail passenger and freight transport is composed by
electrical engine and ICE trains. Marine passenger and freight
transport are represented by electrical motor, liquefied methane
(LNG) and liquid fuels ICE propelled vessels. Aviation passenger and
freight transport are represented by electricity, hydrogen and liquid
fuels based aviation.

Storage technologies can be divided in three main categories.
Short-term storage: battery and pumped hydro energy storage
(PHES). Medium-term storage technologies are adiabatic com-
pressed air energy storage (A-CAES), high and medium tempera-
ture thermal energy storage (TES) technologies. Long-term gas
storage including power-to-gas (PtG) technology.

Sector coupling technologies include fuel synthesis technolo-
gies: electrolysers, and further H)-to-X synthesis technologies;
Power-to-Heat (direct electrical heaters, district and individual
scale heat pumps) and Heat-to-Power (steam turbines) technolo-
gies; and other: seawater desalination, water storage and pumping
technologies. These technologies allow to convert energy or prod-
ucts from one sector into valuable services or energy for another
sector increasing the overall efficiency of the system and providing
additional flexibility for the system.

Electricity transmission technologies include high voltage AC
(HVAC) and DC (HVDC) power lines and AC/DC converters which
allow to interconnect AC power grids of regions inside the coun-
tries, thought countries power grids are not interconnected. The
structure of the regional AC power grids of the regions is not
modelled, however regional grids development trends are consid-
ered in overall electricity transmission and distribution losses [20].
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2.3. Financial and technical assumptions

The financial and technical assumptions are mostly taken from
the European Commission [21], but also from various other refer-
enced sources [22—50]. The financial and technical assumptions for
all power and heat generation capacities, storage, transmission and
sector coupling technologies and fuels with their respective refer-
ences are presented in Appendix A (Tables A1-A4). Assumptions are
made in 5-year time steps for the years 2015—2050. For all sce-
narios, weighted average cost of capital (WACC) is set to 7%, but for
residential PV prosumers WACC is set to 4% due to lower expecta-
tion of financial returns. Application of region specific WACC levels
would result in more accurate results, however there is limited
research with regard to the development of WACC in the long term
capturing country-specific variations [51]. Electricity prices for
residential, commercial and industrial consumers were derived for
every region according to Gerlach et al. [52], and extended to 2050
according to Breyer et al. [53]. Excess electricity generated by
prosumers is fed into the national grid and is assumed to be sold for
a transfer price of 0.02 €/kWh. The model ensures that prosumers
satisfy their own demand for electricity before feeding excess into
the grid.

2.4. Demand and resource potential for renewable technologies

Power demand is mostly based on electricity consumption
growth data from IEA [45] and local sources, as described in Bog-
danov et al. [18], and projections for transmission and distribution
grid losses are taken from Sadovskaia et al. [20]. Heat demand is
based on a report by Barbosa [54]. Desalination demand is taken
from Caldera and Breyer [55]. Transportation demand is taken from
Khalili et al. [56]. Power, heat, transport, and desalination demand
assumptions for each step of the transition are provided in
Appendix A (Table A5).

The capacity factor profiles for optimally fixed tilted PV, CSP and
wind energy are calculated according to Bogdanov et al. [57] using
global weather data for the year 2005 from NASA [58,59] and
reproduced by German Aerospace Centre [60], single-axis tracking
PV capacity factors profiles are calculated according to Afanasyeva
et al. [61]. The hydropower feed-in profiles are computed based on
the monthly resolved river flow data for the year 2005 [62] as a
normalised weighed average flow in locations of existing hydro-
power plants.

The potentials for sustainable biomass and waste resources are
based on Bunzel et al. [63] and classified into three main categories:
solid wastes (non-recyclable municipal wastes and used wood),
solid agriculture and forestry residues and biogas feedstock
(municipal biowastes, manure, sludge). The assumptions consider
high recycling rates for plastic, cardboard and paper, limiting
feedstock for waste incinerators, and high collection rates of biogas
feedstock, which increases valuable biogas influx and limits the
leakage of landfill gases as emissions. The costs for biomass are
calculated using data from the IEA [64] and Intergovernmental
Panel on Climate Change (IPCC) data [65]. The gate fee in 2015 is
assumed to be in the range 50—100 €/tonne, rising to 100 €/tonne
in all regions by 2050. The region specific solid agriculture and
forestry residues, biogas and solid wastes, and corresponding cost
assumptions are presented in Appendix A (Table A6).

Geothermal energy potential was calculated according to the
method described in Aghahosseini et al. [66]. The A-CAES storage
potential is based on a global A-CAES resource assessment [G7].
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3. Results and discussion
3.1. High electrification scenario

The development of the energy sector comprised of power, heat,
transport and desalination sectors is characterised by a dynamically
growing electricity demand driven by electrification of the energy
system and continuous growth in final energy demand across
developing and emerging countries. A global compound annual
growth rate (CAGR) of final energy demand is about 1%, but the
growth rates are much higher for developing countries.

Powertrain assumptions capture the transition from a fossil
fuels based transport sector towards one with high levels of direct
electrification and adoption of synthetic fuels, based on indirect
electrification [56]. Other sectors also face comprehensive electri-
fication due to the overall decline in costs of electricity as well as
electricity-based heating and desalination technologies. In the
frame of this high electrification scenario, electricity is expected to
become the dominant energy carrier with a TPED share of about
89% by 2050, while the utilisation of fossil fuels declines to zero,
indicating a fundamental change in terms of energy consumption
around the world. Direct and indirect electrification together with
the growth of the renewable electricity generation share in the
power sector lead to a substantial increase of overall energy effi-
ciency. This defossilisation and electrification induced efficiency
gains result in decoupling of final and primary energy growth rates
during the transition process, as highlighted in Fig. 1. Despite the
growth in energy services and final energy demand, total primary
energy demand (TPED) decreases from about 125,000 TWh in 2015
for the mentioned energy sectors to around 105,000 TWh by 2035
and increases to 150,000 TWh by 2050, which results in a CAGR of
0.5%. In comparison, a progression of current practices with low
shares of electrification and a majorly fossil fuels based energy
system would result in a TPED of nearly 300,000 TWh by 2050,
which implies a CAGR of 2.5%. This effect on the energy system is
one of the most fundamental results of this research, since it results
in efficiency savings of nearly 150,000 TWh (approximately 49%)
compared to the continuation of current practices with low shares
of electrification, while energy services can be steadily expanded.
Moreover, this varies substantially across the different regions of
the world, regions with existing high renewable electrification gain
less, for instance Norway [68], whereas regions with least efficient
energy systems gain most, e.g. oil-rich Libya and Saudi Arabia.
Solar-rich Africa, which is yet to develop most of its energy infra-
structure, can leapfrog into a highly electrified energy system of the
future [69] (see Fig. 1). The TPED is calculated based on IEA’s

300,000

T
I Power
Il Heat
B Transport !

[ | Desalination i

|L_ _iLow electrification (as of today) !

250,000

200,000

150,000

100,000

Primary energy demand [TWh]

50,000

2020

2030
Years

2040 2050

Energy 227 (2021) 120467

Physical Energy Content Method (PECM), while other methods
result in different TPEDs, i.e. the Partial substitution Method (PSM)
would lead to higher TPED, while the Direct Equivalent Method
would lead to lower TPED [70]. The PECM defines primary energy as
the physically obtained energy at the first extraction from nature
and equates all fuels and technologies fairly on this fundamental
basis of initial human action.

Despite the projected per capita consumption growth of energy
services, the average per capita primary energy demand decreases
from around 17 MWh/capita in 2015 to around 15 MWh/capita by
2050. Only the projected population growth from 7.2 to 9.7 billion
by 2050 [71] leads to absolute TPED growth.

Another metric for renewable energy system efficiency is
curtailment of electricity generation. Despite the variability in
renewable electricity based generation, the curtailment in the
system is rather low at about 3.5% of total electricity generation in
2050. This low curtailment results from the combination of flexi-
bility options, mainly battery storage balancing diurnal PV gener-
ation and flexible demand response from synthetic fuel production,
particularly electrolysers.

3.2. Evolutionary transition leaps

To support the energy system transition, global electricity gen-
eration undergoes a rapidly evolving transition from predomi-
nantly fossil fuels in 2015 to 98% renewables in 2040, and entirely
zero GHG emissions by 2050. The driving force is the cost of elec-
tricity generation technologies, wherein solar PV emerges as the
major electricity supply source in a cost optimal energy transition,
increasing from a mere 1% in 2015 to around 32% by 2030 and
further increases to 76% by 2050 (see Fig. 2). This exponential
growth in solar PV electricity supply is also attributed to the
excellent resource distribution across the world. Wind energy is the
major source of renewables during the early part of the transition,
with a share in electricity supply increasing up to 42% by 2030.
Thereafter, as solar PV becomes more cost effective the share of
wind energy steadily declines to about 20% until 2050, while still
growing in absolute terms until 2045. Hydropower, geothermal and
bioenergy have some shares in the global electricity mix by 2050,
with complementary roles through the transition due to limited
resource availability. While, they do contribute substantially in
some regions across the world, with major shares in energy supply
through the transition. The value of reservoir-based hydropower
and bioenergy is high due to their dispatchability. On the other
hand, the shares of fossil fuels and nuclear in the electricity gen-
eration mix are observed to decline completely through the

average for regions: 49.1%
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Fig. 1. Global primary energy demand sector-wise (left) including efficiency gains in primary energy demand as indicated by dashed lines for lack of efficiency improvements, and
primary energy demand per capita (right) during the energy transition from 2015 to 2050.
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Fig. 2. Global — Technology-wise electricity generation (left) and technology-wise heat generation (right) during the energy transition from 2015 to 2050.

transition period, as they become uneconomical compared to re-
newables (see Fig. 2). Overall electricity supply increases from
nearly 24 PWh in 2015, to 137 PWh in 2050, the main driving force
is the fast growth of electricity demand from electrified heat,
transport and desalination sectors, while the electricity demand
from the power sector (excluding heat, transport and desalination)
increase to just around 41 TWh by 2050. In addition, the share of
electricity for the power sector declines from over 83% in 2015 to
just about 30% in 2050, this highlights the significant rise of elec-
tricity demand from the other sectors. The rate of electricity supply
growth is even higher in developing regions, where electrification
is driven by the overall growth in energy consumption per capita,
with efforts to close the gap in energy access between developed
and developing countries.

Similarly, global heat generation transitions from high shares of
fossil fuels based heat in 2015 to electric and renewable based heat
in 2050. Heat pumps and electrical heating in general play a sig-
nificant role in the heat sector with a share of over 40% of heat
generation by 2050 on district heating (DH) and individual heating
(IH) levels, as shown in Fig. 2. Additionally, some shares of non-
fossil gas and biomass-based heating contribute to satisfying in-
dustrial process heat demand. Whereas the shares of coal-based
heating along with fossil oil and gas based heating decrease
through the transition, from more than 75% in 2015 to zero by 2050.

Electrification of the heat and transport sectors along with the
additional electricity demand for desalination, strongly influence
the defossilisation of the power and heat sectors. Direct electrifi-
cation of transportation leads to additional electricity demand of
13,000 TWhg in 2050 compared to 477 TWhg in 2015, whereas
indirect electrification results in further additional electricity de-
mand of 39,000 TWhe to produce synthetic fuels in 2050:
hydrogen, methane, LHy, LNG and Fischer-Tropsch (FT) fuels. Pro-
jected water desalination demand in most water stressed regions
will reach 1100 bm? in 2050, which will lead to additional elec-
tricity demand of 5900 TWhg to run seawater reverse osmosis
units and water transport systems. Rapid growth of electricity de-
mand during the transition increases demand for new power
generation capacities and consequently results in diminishing
shares of fossil fuels based electricity in the generation mix.
Without a high level of sector coupling and additional electricity
demand from heat, transport and desalination, electricity genera-
tion in 2050 would be approximately 40,000 TWh and fossil gen-
eration capacities would play a more significant role through the
transition.

3.3. Critical role of solar PV — utility-scale and prosumers

Solar PV is expected to become the prime energy supply tech-
nology, similar to the conclusion of Creutzig et al. [72]. The largest
share of solar PV in the total generation mix is reached mostly in
the Sun Belt and developed countries. In the Sun Belt countries,
perfect solar conditions make large-scale solar PV unrivalled, while
in developed countries PV prosumers form a significant share of the
capacity mix due to high electricity retail prices and respective
attractive economics. This can be noticed with the stark difference
in the shares of PV prosumer electricity in most European countries
with high shares. Whereas, Russia and adjoining countries, which
currently have low retail electricity prices (that are heavily sub-
sidised), have much lower shares of electricity from PV prosumers
(see Fig. 3).

3.4. Local resource driven energy systems

The regional structure of power and heat supply is strongly
dependent on local resource availability and its match with energy
consumption profiles. Solar PV capacities are well distributed
across the different regions of the world and achieve a total
installed capacity base of 63,380 GW in 2050. Whereas wind energy
capacities achieve a total installed capacity base of 8130 GW in
2050 and are predominantly from latitudes of 45° N and higher,
which show a strong energy consumption and renewable elec-
tricity generation seasonality effect, i.e. parts of North America,
Europe and Eurasia have higher wind energy capacities (see Fig. 4).

In a system that is massively dependent on variable renewable
energy sources, such as solar PV and wind energy electricity, stor-
age plays a vital role in matching supply and demand. Utility-scale
and prosumer batteries contribute a major share of electricity
storage capacities, with some shares of pumped hydro energy
storage (PHES) and compressed air energy storage (A-CAES) by
2050, as shown in Fig. 4. Batteries, both prosumers and utility-scale,
deliver the largest shares of output by 2050, as shown in Fig. 4. The
share of output from prosumer batteries is relatively higher in the
most developed regions with high PV prosumer capacities, espe-
cially Europe and North America, whereas utility-scale batteries
deliver higher outputs in the southern regions of MENA, SAARC and
Northeast Asia. PHES and A-CAES contribute complementary
shares of electricity storage output through the transition across
the different regions of world. As far as heat is concerned, gas
storage is installed across all regions primarily as a buffer storage
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Fig. 3. Regional variation of the share of electricity generation from large-scale solar PV (left) and PV prosumers (right) on a global scale in 2050.
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for biomethane and synthetic natural gas production and seasonal
storage. On a global level, biomethane and synthetic natural gas
contribute 0.29% and 0.14%, respectively, of the total electricity
supply, while hydrogen is not considered as a seasonal storage for
electricity in this research. However, their role is more significant in
high latitude regions where long-term storage is necessary for
seasonal balancing. A well-balanced and optimised 100% renewable
energy system does not require much seasonal balancing in the
form of stored gaseous compounds. High temperature and district
heating thermal energy storage (TES) contribute ample shares of
output, since they operate to balance short to mid-term heat de-
mand variations.

3.5. Cost optimal energy transition pathway

Renewable energy generation along with electricity and heat
storage technologies evolve as the fundamental pillars of the global
energy supply system in the first half of the 21st century, changing
the system while its levelised cost of energy remains stable through
the transition. Levelised cost of energy is defined as the annualised
energy system cost per unit of final energy demand. Investments
needed to make this transition happen are presented in Fig. 5.

Investments, which are capital expenditures for installed ca-
pacities of energy technologies that occur in the 5-year time pe-
riods, are well spread across a range of technologies. Majority of the
investments are allocated in the power sector, which becomes the
backbone of the whole energy system: solar PV, wind energy and
batteries are installed to substitute fossil fuels based generation and
satisfy the growing electricity demand of all energy sectors. Heat
pumps and synthetic fuel production technology capacities are
mostly built in the later periods of the transition, when direct and
indirect electrification of heat and transport sectors accelerates.
Investments increase substantially on an annual basis from over
900 b€ in 2020 to around 2800 b€ by 2050, enabling fossil fuels
substitution by RE-based electricity in all energy sectors. Moreover,
the cumulative capital expenditures are about 67,200 b€ through
the energy transition, with a majority in the later part from 2040
onwards, when a massive defossilisation of the transport sector is
projected, in particular for marine and aviation. However, levelised
cost of energy remains around 50—57 €/MWh through the tran-
sition because increased capital expenditures are well compen-
sated by phasing out fossil fuel costs in the long term, as shown in
Fig. 5. However, this does pose a challenge in the short term for
developing countries with recent and new investments into fossil
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fuel assets, which are soon to face economic challenges from
declining costs of renewables. Innovative policy and fiscal mecha-
nisms will be needed to effectively plan phase-outs and di-
vestments, at the same time taking on opportunities to leapfrog
into a sustainable energy system. Shifting fossil fuel subsidies and
additional financial support by development institutions could
drive developing and emerging countries towards rapid adoption of
sustainable energy. The total system wide levelised cost of energy
in 2050 is slightly less than in 2015. This corroborates that an en-
ergy transition towards 100% renewable energy is an economically
attractive proposition, since the transition in the energy system is
projected to be cost-neutral in practical terms.

On a regional level, the levelised cost of energy for a 100%
renewable energy system remains in an affordable range of 40—80
€/MWh, with the global average cost of 53.8 €/MWh across the
different regions of the world in 2050, as indicated in Fig. 6.
Moreover, a vast majority of the regions have levelised cost of en-
ergy in the range of 45—55 €/MWh.

Fischer-Tropsch fuels, hydrogen and liquefied gases (methane
and hydrogen) are viable alternatives to fossil fuels and are ex-
pected to play a vital role in replacing fossil fuels in hard-to-abate
applications [73—75]. The regional variation of production costs
of these fuels has been factored into the cost optimal energy
transition pathway. As indicated in Fig. 6, production costs for FT-
fuels vary significantly across the different regions of the world
with a global average cost of nearly 86 €/MWh in 2050. FT-fuel
costs in Europe and central Asian regions are higher due to a
decentralised and localised approach to the production of FT-fuels,
whereas an integrated production and trading of FT-fuels will most
likely reduce the costs [76]. For most parts of the world the costs
range from 75 to 85 €/MWh. In addition, costs are extremely low
(60—65 €/MWh) in South America (driven by low-cost wind in
Patagonia and low-cost PV in Atacama Desert) and China, which
could become future hubs for FT-fuel production (see Fig. 6), if the
attractive cost in the Horn of Africa and the very south of the
Arabian Peninsula may not be accessible due to political disorder, at
least in the short-to mid-term.

3.6. Regionally diverse energy systems

In a highly digitalised future with strong global climate policies,
electrification of energy services are expected to be pervasive [77].
Primarily, fossil and nuclear fuels used in the power sector are
substituted by technologies directly extracting electricity from the
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Fig. 5. Capital expenditures for five-year intervals (left) and levelised cost of energy (right) of the entire energy system during the energy transition from 2015 to 2050. Levelised
cost of energy is increasingly dominated by capital costs as fuel costs lose importance through the transition period, which implies increased levels of energy security for countries

around the world.
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Fig. 6. Regional levelised costs of energy (left) and Fischer-Tropsch (FT) fuels costs (right) in 2050.

environment, in particular solar PV and wind energy. Power-to-X
technologies will play a central role in linking low-cost variable
renewable electricity and demand across all energy sectors. Electric
vehicles will largely replace fossil-fuelled 2-wheelers, 3-wheelers,
cars and trucks [56,78]. Meanwhile, heat pumps and electric
heating substitute oil and gas furnaces in buildings and industries
[79,80]. In addition, renewable electricity is used to produce
hydrogen and other synthetic fuels for applications where direct
electrification is uneconomical or technically challenging [81,82].
The advantages of widespread electrification are clear and
compelling [9].

Another critical aspect of this research is capturing the regional
variation in energy systems across the world through the transition
period. Renewable energy resources are well distributed around
the world, but different resources are available in different pro-
portions, across the different regions. Therefore, the results of this
research enable energy transition pathways that maximise uti-
lisation of locally available renewable resources in a cost optimal
manner, as indicated in Fig. 7.

Wind turbine
based system

Solar PV
based system

The results provide regional insights into energy systems from a
global perspective. Likewise, the high latitude countries utilise
relatively higher shares of wind energy as compared to Sun Belt and
moderate climate countries, where solar PV is rather predominant.
Eurasia along with some regions in Europe and North America
utilise higher shares of onshore wind energy across the northern
regions. Hence, regions in Eurasia are wind dominated (see Fig. 7).
Additionally, Canada and some parts of the USA are dominated by
wind energy. Meanwhile, just the Patagonian region of Argentina is
dominated by wind energy in the Southern hemisphere. In most
regions and countries around the world, low-cost solar PV, as
highlighted in Fig. 7, will dominate energy systems. By 2050, the
highest generation share of solar PV among regions is in SAARC [83]
with more than 95% in its cost optimal generation mix, whereas
sub-Saharan Africa [69] utilises 82% of all electricity generation
from single-axis tracking solar PV in its cost optimal generation
mix. Meanwhile, only Iceland is dominated by hydropower in 2050
due to limited hydropower potential in other regions [84]. Notably,
some regions, such as New Zealand, Chile, Northeast China, Nordic

Hydropower
based system

Technology mix
based system i

Fig. 7. Regional energy mix for power, heat, transport and desalination sectors in 2050.
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region and Russian Far East have an energy system based on an
even mix of renewable energy technologies with solar PV, wind
energy and hydropower playing substantial roles (see Fig. 7).
Similarly, from a heat supply perspective Eurasia has the most
attractive techno-economic conditions for the application of heat
pumps in the heat sector, providing about 60% of heating demand
by this technology from 2030 through 2050. Other regions that
cover a large part of the heating demand with heat pumps by 2050
are Europe with 51%, North America with 50%, Northeast Asia and
sub-Saharan Africa both with 45%, respectively.

3.7. Climate compliant energy transition pathway

The results of the global transition towards a 100% renewable
energy system indicate a steady decline in global GHG emissions to
zero until 2050, as shown in Fig. 8. Global Tank-to-Wheel (TTW)
GHG emissions from the power sector decline through the transi-
tion from over 11,000 MtCOx¢g/a in 2015 to zero by 2050. Similarly,
GHG emissions from the heat sector decline through the transition
from over 9300 MtCOpeq/a in 2015 to zero by 2050. Global GHG
emissions from the transport sector decline through the transition
from over 9000 MtCOzeq/a in 2015 to zero by 2050. During the
initial periods, GHG emissions of the transport sector increases,
whereas a rapid electrification of the road transport mode and
parallel rise in renewable electricity leads to a massive GHG
emissions reduction from the 2020s onwards. The power sector
undergoes a deep defossilisation by 2030, whereas for the heat and
transport sectors this occurs mostly between 2030 and 2050. The
remaining cumulative energy related GHG emissions taken into
account in this study comprise around 422 GtCO3eq from 2018 to
2050 as shown in Fig. 8.

The IPCC SR1.5 report [2] recommends that cumulative CO,
emissions should be kept within a budget by reducing global
annual GHG emissions to net-zero and further suggests a remaining
budget for limiting warming to 1.5 °C with a 66% chance of about
550 GtCO,, and of about 750 GtCO; for a 50% chance, accounting
GHG emissions from 2018 onwards. In this context, this research
shows that cumulative GHG emissions can be limited to 422 GtCO;
from 2018 to 2050 across the power, heat, transport and desali-
nation sectors globally. CO; emissions from remaining sectors have
not been factored, in particular from non-energetic industrial
feedstock and processes, land use, agriculture and waste. The non-
energetic industrial feedstock demand is mainly represented by the
chemical industry, which can be also transitioned to zero GHG
emissions with renewable electricity based bulk chemicals, in
particular ammonia and methanol [85,86]. Comparing the GHG
emissions of this research to the second half of the previous decade
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with global anthropogenic CO, emissions of about 40 GtCO, per
year [87] shows that this research covers about 75% of all CO,
emissions, while about 85% of all CO, emissions originating from
fossil fuels use and the remaining 15% are land use related.
Assuming that all anthropogenic CO, emissions would be reduced
in the same pace as the traced emissions in this research, then the
total remaining CO, emissions would equate to about 567 GtCO,.
Consequently, the ambitious energy transition pathway described
in this research could be categorised as limiting peak warming to
about 1.5 °C with 66% probability by mid-21st century, as the total
pathway emissions are quite close to the 550 GtCO, limit. Even
more aggressive actions could be needed for a more safer tem-
perature level [88], including a rapid transition and carbon dioxide
removal (CDR) [89], which may be realised mainly by the highly
scalable direct air captured carbon and storage (DACCS) [90], as
indicated by Realmonte et al. [91]. Grubler et al. [9] demonstrated a
1.5 °C scenario without CDR, but with the compromise of 40% less
final energy demand in 2050 compared to the present level.
Whereas, this research shows a 1.5 °C scenario without CDR, along
with a final energy demand growth of 43% from 2015 to 2050, and
in a cost-optimal manner, which is enabled by massive direct and
indirect electrification of the entire energy system and the conse-
quent use of low-cost renewable electricity.

4. Conclusions

The fundamental structure of the global energy system can shift
from conventional, low-efficient burning of extracted fuels towards
almost pure exergy, which is electricity, generated from low-cost
solar, wind and other natural energy resources. This transition
will result in substantial growth of the system efficiency and enable
rapid reduction of GHG emissions to fulfil a 1.5 °C scenario without
CDR utilisation or limitations on final energy consumption. The
broad electrification of end-use sectors like transport and heat
makes electricity the growing backbone of the world’s energy
supply [92].

A 1.5 °C compatible transition scenario requires rapid defossi-
lisation coupled with accelerated electrification of the different
energy sectors, starting with the power sector already in the 2020s.
Global levelised cost of energy of the whole system stays rather
constant through the transition, even with the levelised cost of
electricity declining significantly, as this new sustainable energy
system includes storage technologies, increased flexibility and
production of synthetic fuels. This in turn, demands massive capital
investments, which not only enable a sustainable energy system
but also increase socio economic welfare [93]. From an investment
perspective, reduced fuel costs in the long term could benefit
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Fig. 8. Global sector-wise and cumulative GHG emissions (left) and GHG emissions in the transport sector from different categories (right) during the energy transition from 2015 to
2050. Tank-to-Wheel (TTW) considers GHG emissions from readily available fuels and does not consider GHG emissions from the upstream production and delivery of fuels.
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various countries, but significant capital investments in the short
term can pose a challenge for economies around the world. How-
ever, findings from BNP Paribas [94] indicate that the net energetic
yield per invested unit of capital in renewable electricity solutions
far exceeds the one in upstream fossil fuels, which are neglected in
most energy system analyses. As energy policy has been evolving
around the world to drive growth in renewable electricity uptake,
these efforts must be scaled up and diversified across the other
sectors.

Economics and markets continue to shape energy choices
around the world, but policymakers will play the central role in
transforming the global energy sector, as highlighted by Daszkie-
wicz [95]. Various energy strategies, targets and policies aiming at
decreasing capital investment costs can be used to trigger the
deployment of renewables across the sectors of power, heat, and
transport. Moreover, from a developing countries perspective, as
Relva et al. [96] point out, in addition to higher shares of renewable
energy resources, this process also requires complementary in-
novations such as energy storage, smart grids, demand response,
network expansion, new business models and market arrange-
ments. Moving forward, energy policies will continue to shape the
energy transition, continuously evolving and adapting to individual
country requirements and dynamic market conditions.

Solar PV transpires to become the main energy source in the
system, similar to the findings of Creutzig et al. [72] and Haegel
et al. [97] with installed capacities in the range of dozens of TW. The
solar PV industry is capable of providing all required capacities, as
shown by Verlinden [98], since 70 TW of PV capacities can be
ramped up by 2050, which is about 10% more than 63.38 TW found
in this research. At the same time, increasing adoption of variable
renewable energy and drastic reduction of the supply of inflexible
baseload generation, is made possible by promoting of Power-to-X,
dispatchable renewables, grids, storage technologies and overall
sector coupling [99] forming a flexible energy system [4]. The
combination of high shares of variable renewable energy and
Power-to-X has been identified as a major gap in Integrated
Assessment Models, mainly used by the IPCC [100], which is a
consequence of unreasonably high solar PV cost assumptions, as
documented in Krey et al. [101] and concluded in Jaxa-Rozen and
Trutnevyte [102]. This is further amplified by methodological short
comings in Power-to-X modelling and lack of hourly resolution
[100]. The results of this research indicate that RE resources are
sufficient to satisfy the growing global energy demand even with
high rates of electrification and moreover, increase in energy access
across developing countries, thereby bridging the gap between
developing and developed countries in terms of energy supply per
capita.

A global energy transition towards 100% renewable energy has
the potential to lift the standards of living for people all around the
world due to phasing out emissions and giving equal access to
energy and water, especially in the Global South, which has
excellent solar conditions throughout the year and tremendous
potential for adopting solar PV as indicated by the results of this
research and others [72]. Introduction of desalination will resolve
the water scarcity issue providing 3 billion m? of clean water per
day. As most of the development across the regions is yet to take
shape, shifting them towards sustainable energy infrastructure
development presents the opportunity to leapfrog developed
countries into a sustainable future. In consequence, global energy
resource based conflicts can be mitigated and a pathway towards
peace and increased welfare can be attained.

Such a transition will directly accomplish four major Sustainable
Development Goals. First, it decreases the probability of significant
climate change threatening civilisation, by reducing GHG emissions
without limiting growth of energy consumption in the future.
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Second, it provides equal access to low-cost energy supply in all
regions across the world. Third, it enables sustainable growth in
standards of living across developing countries of the Global South.
Fourth, it enables universal access to clean water and decreases
water stress. Indirectly, it will also help accomplish several other
Sustainable Development Goals leading to an overall sustainable
future.
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